Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564686

RESUMO

BACKGROUND AND OBJECTIVES: In progressive multiple sclerosis (MS), compartmentalized inflammation plays a pivotal role in the complex pathology of tissue damage. The interplay between epigenetic regulation, transcriptional modifications, and location-specific alterations within white matter (WM) lesions at the single-cell level remains underexplored. METHODS: We examined intracellular and intercellular pathways in the MS brain WM using a novel dataset obtained by integrated single-cell multi-omics techniques from 3 active lesions, 3 chronic active lesions, 3 remyelinating lesions, and 3 control WM of 6 patients with progressive MS and 3 non-neurologic controls. Single-nucleus RNA-seq and ATAC-seq were combined and additionally enriched with newly conducted spatial transcriptomics from 1 chronic active lesion. Functional gene modules were then validated in our previously published bulk tissue transcriptome data obtained from 73 WM lesions of patients with progressive MS and 25 WM of non-neurologic disease controls. RESULTS: Our analysis uncovered an MS-specific oligodendrocyte genetic signature influenced by the KLF/SP gene family. This modulation has potential associations with the autocrine iron uptake signaling observed in transcripts of transferrin and its receptor LRP2. In addition, an inflammatory profile emerged within these oligodendrocytes. We observed unique cellular endophenotypes both at the periphery and within the chronic active lesion. These include a distinct metabolic astrocyte phenotype, the importance of FGF signaling among astrocytes and neurons, and a notable enrichment of mitochondrial genes at the lesion edge populated predominantly by astrocytes. Our study also identified B-cell coexpression networks indicating different functional B-cell subsets with differential location and specific tendencies toward certain lesion types. DISCUSSION: The use of single-cell multi-omics has offered a detailed perspective into the cellular dynamics and interactions in MS. These nuanced findings might pave the way for deeper insights into lesion pathogenesis in progressive MS.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Epigênese Genética , Multiômica , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Crônica Progressiva/patologia , Substância Branca/patologia
2.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542346

RESUMO

Multiple sclerosis (MS) is a complex inflammatory disease affecting the central nervous system. Most commonly, it begins with recurrent symptoms followed by partial or complete recovery, known as relapsing-remitting MS (RRMS). Over time, many RRMS patients progress to secondary progressive MS (SPMS), marked by gradual symptom deterioration. The factors triggering this transition remain unknown, lacking predictive biomarkers. This study aims to identify blood biomarkers specific to SPMS. We analyzed six datasets of SPMS and RRMS patients' blood and brain tissues, and compared the differential expressed genes (DEGs) obtained to highlight DEGs reflecting alterations occurring in both brain and blood tissues and the potential biological processes involved. We observed a total of 38 DEGs up-regulated in both blood and brain tissues, and their interaction network was evaluated through network analysis. Among the aforementioned DEGs, 21 may be directly involved with SPMS transition. Further, we highlighted three biological processes, including the calcineurin-NFAT pathway, related to this transition. The investigated DEGs may serve as a promising means to monitor the transition from RRMS to SPMS, which is still elusive. Given that they can also be sourced from blood samples, this approach could offer a relatively rapid and convenient method for monitoring MS and facilitating expedited assessments.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla/diagnóstico , Esclerose Múltipla Recidivante-Remitente/metabolismo , Encéfalo/metabolismo , Biomarcadores
3.
Mol Biol (Mosk) ; 57(5): 819-826, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37752647

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune inflammatory and neurodegenerative disease of the central nervous system, which is characterized by significant clinical heterogeneity. Primary progressive MS (PPMS) develops in 10-15% of patients. Unlike the most common relapsing-remitting form of MS, PPMS involves steady progress of neurodegeneration and, as a consequence, a persistent gradual increase in neurological symptoms. The peculiarities of epigenetic regulation of gene expression may be one of the reasons for the differences in the pathogenesis of the two MS forms. DNA methylation is one of the key epigenetic mechanisms, which remains almost unexplored in different cell populations of PPMS patients. The goal of this work was to identify differential methylation profiles of the CpG sites in the CD14+ monocyte DNA, which characterize PPMS. A genome-wide analysis of DNA methylation in PPMS patients and healthy individuals has identified 169 differentially methylated positions (DMPs), 90.5% of which were hypermethylated in PPMS patients. More than half of all DMPs are located in/near known genes and within CpG islands and their neighboring regions, which indicates their high functional significance. We have found six differentially methylated regions (DMRs) in the OR2L13, CAT, LCLAT1, HOXA5, RNF39, and CRTAC1 genes involved in inflammation and neurodegeneration, which indicates active epigenetic regulation of their expression.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Recidivante-Remitente/genética , Epigênese Genética , Metilação de DNA , Monócitos , Doenças Neurodegenerativas/genética , Proteínas de Ligação ao Cálcio/genética
4.
Mult Scler ; 29(10): 1209-1215, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37435869

RESUMO

BACKGROUND: The two main phenotypes of multiple sclerosis (MS), primary progressive (PPMS) and relapsing Onset (ROMS), show clinical and demographic differences suggesting possible differential risk mechanisms. Understanding the heritable features of these phenotypes could provide aetiological insight. OBJECTIVES: To evaluate the magnitude of familial components in PPMS and ROMS and to estimate the heritability of disease phenotypes. METHODS: We used data from 25,186 MS patients of Nordic ancestry from the Swedish MS Registry between 1987 and 2019 with known disease phenotype (1593 PPMS and 16,718 ROMS) and 251,881 matched population-based controls and 3,364,646 relatives of cases and controls. Heritability was calculated using threshold-liability models. For familial odds ratios (ORs), logistic regression with robust sandwich estimator was utilized. RESULTS: The OR of MS diagnosis in those with a first-degree family member with ROMS was 7.00 and 8.06 in those with PPMS. The corresponding ORs for having a second-degree family member with ROMS was 2.16 and 2.18 in PPMS. The additive genetic effect in ROMS was 0.54 and 0.22 in PPMS. CONCLUSION: Risk of MS increases by several folds in those with a relative with MS. The likelihood of developing either disease phenotype appears independent of genetic predisposition.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Esclerose Múltipla Crônica Progressiva/epidemiologia , Esclerose Múltipla Crônica Progressiva/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Progressão da Doença , Fenótipo , Esclerose Múltipla Recidivante-Remitente/genética
5.
Int J Mol Sci ; 24(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37511014

RESUMO

Multiple Sclerosis (MS) is a common immune-mediated disorder of the central nervous system that affects young adults and is characterized by demyelination and neurodegeneration. Recent studies have associated C9orf72 intermediate repeat expansions with MS. The objective of this study was to investigate whether C9orf72 repeat length is associated with MS or with a specific disease course in a monocentric Austrian MS cohort. Genotyping of 382 MS patients and 643 non-neurological controls for C9orf72 repeat expansions was performed. The study did not find a difference in the distribution of repeat numbers between controls and MS cases (median repeat units = 2; p = 0.39). Additionally, sub-analysis did not establish a link between intermediate repeats and MS (p = 0.23) and none of the patients with progressive disease course carried an intermediate allele (20-30 repeat units). Exploratory analysis for different cut-offs (of ≥7, ≥17, and ≥24) did not reveal any significant differences in allele frequencies between MS and controls. However, the study did identify a progressive MS patient with a pathogenic C9orf72 expansion and probable co-existing behavioral variant frontotemporal dementia (bvFTD) in a retrospective chart review. In conclusion, this study did not find evidence supporting an association between C9orf72 repeat length and MS or a specific disease course in the Austrian MS cohort. However, the identification of a progressive MS patient with a pathogenic C9orf72 expansion and probable co-existing with FTD highlights the complexity and challenges involved in recognizing distinct neurodegenerative diseases that may co-occur in MS patients.


Assuntos
Proteína C9orf72 , Esclerose Múltipla , Humanos , Esclerose Lateral Amiotrófica/genética , Áustria , Proteína C9orf72/genética , Demência Frontotemporal/genética , Esclerose Múltipla/genética , Esclerose Múltipla Crônica Progressiva/genética , Estudos Retrospectivos
6.
Brain Res ; 1814: 148424, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245645

RESUMO

Cognitive impairment is a common and debilitating feature of multiple sclerosis (MS), and the dysregulation of synaptic plasticity is one of its direct causes. Long non-coding RNAs (lncRNAs) have been shown to play a role in synaptic plasticity, but their role in cognitive impairment in MS has not been fully explored. In this study, using quantitative real-time PCR, we examined the relative expression of two specific lncRNAs, BACE1-AS and BC200, in the serum of two cohorts of MS patients with and without cognitive impairment. Both lncRNAs were overexpressed in both cognitively impaired and non-cognitively impaired MS patients, with consistently higher levels in the cohort with cognitive impairment. We also found a strong positive correlation between the expression levels of these two lncRNAs. Notably, BACE1-AS was consistently higher in the remitting cases of both relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS) groups than in the respective relapse cases of the same subtype, with the SPMS-Remitting group of cognitively impaired MS patients showing the highest expression of BACE1-AS among all MS groups. Additionally, we observed that the primary progressive MS (PPMS) group had the highest expression of BC200 in both cohorts of MS. Furthermore, we developed a model called Neuro_Lnc-2, which showed better diagnostic performance than either BACE1-AS or BC200 alone in predicting MS. Our findings suggest that these two lncRNAs may have a significant impact on the pathogenesis of the progressive types of MS and on the cognitive function of the patients. Future research is required to confirm these findings.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , RNA Longo não Codificante , Humanos , Esclerose Múltipla/genética , RNA Longo não Codificante/genética , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Esclerose Múltipla Crônica Progressiva/complicações , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Recidivante-Remitente/genética , Cognição , Perfilação da Expressão Gênica
7.
Biol Open ; 12(3)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36744877

RESUMO

Multiple sclerosis (MS) is an auto-immune inflammatory disorder affecting the central nervous system. The cause of the disease is unknown but both genetic and environmental factors are implicated in the pathogenesis. We derived cerebral organoids from induced pluripotent stem cells (iPSC) of healthy control subjects as well as from primary progressive MS (PPMS), secondary progressive MS (SPMS) and relapsing remitting MS (RRMS) patients to better understand the pathologic basis of the varied clinical phenotypic expressions of MS. In MS organoids, most notably in PPMS, we observed a decrease of proliferation marker Ki67 and a reduction of the SOX2+ stem cell pool associated with an increased expression of neuronal markers CTIP2 and TBR1 as well as a strong decrease of oligodendrocyte differentiation. This dysregulation of the stem cell pool is associated with a decreased expression of the cell cycle inhibitor p21. Our findings show that the genetic background of a patient can directly alter stem cell function, provides new insights on the innate cellular dysregulation in MS and identifies p21 pathway as a new potential target for therapeutic strategies in MS.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Esclerose Múltipla Crônica Progressiva/genética , Células-Tronco , Diferenciação Celular , Organoides , Oligodendroglia
8.
Artigo em Inglês | MEDLINE | ID: mdl-36724195

RESUMO

BACKGROUND AND OBJECTIVES: Primary progressive multiple sclerosis (PPMS) displays a highly variable disease progression with a characteristic accumulation of disability, what makes difficult its diagnosis and efficient treatment. The identification of microRNAs (miRNAs)-based signature for the early detection in biological fluids could reveal promising biomarkers to provide new insights into defining MS clinical subtypes and potential therapeutic strategies. The objective of this cross-sectional study was to describe PPMS miRNA profiles in CSF and serum samples compared with other neurologic disease individuals (OND) and relapsing-remitting MS (RRMS). METHODS: First, a screening stage analyzing multiple miRNAs in few samples using OpenArray plates was performed. Second, individual quantitative polymerase chain reactions (qPCRs) were used to validate specific miRNAs in a greater number of samples. RESULTS: A specific profile of dysregulated circulating miRNAs (let-7b-5p and miR-143-3p) was found downregulated in PPMS CSF samples compared with OND. In addition, in serum samples, miR-20a-5p and miR-320b were dysregulated in PPMS against RRMS and OND, miR-26a-5p and miR-485-3p were downregulated in PPMS vs RRMS, and miR-142-5p was upregulated in RRMS compared with OND. DISCUSSION: We described a 2-miRNA signature in CSF of PPMS individuals and several dysregulated miRNAs in serum from patients with MS, which could be considered valuable candidates to be further studied to unravel their actual role in MS. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that specific miRNA profiles accurately distinguish PPMS from RRMS and other neurologic disorders.


Assuntos
MicroRNAs , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Estudos Transversais , MicroRNAs/sangue , MicroRNAs/líquido cefalorraquidiano , MicroRNAs/genética , Esclerose Múltipla/sangue , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/genética , Esclerose Múltipla Crônica Progressiva/sangue , Esclerose Múltipla Crônica Progressiva/líquido cefalorraquidiano , Esclerose Múltipla Crônica Progressiva/genética , Recidiva
9.
Int Immunopharmacol ; 116: 109797, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738680

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an aggressive disease characterized by central nervous system (CNS) inflammatory and demyelinating lesions. Tolerance failure is implicated in the development of several autoimmune disorders, including MS. Due to their involvement in maintaining environmental tolerance, regulatory T cells (Tregs) are regarded as efficient immune cells. We examined the frequency of Tregs in this study using CD4/CD25/forkhead box protein P3 (FOXP3)/Helios markers. METHODS: Fifty participants, including 25 patients with secondary progressive MS (SPMS) and 25 healthy controls (HCs), were enrolled in this study, and their demographic characteristics were recorded. Peripheral blood samples ranging from 5 to 6 mL were obtained, and the Ficoll technique was used to extract peripheral blood mononuclear cells (PBMCs). Then, the percentage of CD4+CD25+FOXP3+Helios+ regulatory T lymphocytes was examined by flow cytometry in the study groups. Real-time polymerase chain reaction (PCR) was also used to assess the Helios gene expression level. RESULTS: This study showed that the percentage of Tregs with CD4 and CD25 markers did not reveal a significant difference compared with HCs despite the decrease in SPMS patients (P = 0.6). However, lymphocytes with CD4/CD25/FOXP3/Helios markers were significantly reduced in the patients (P = 0.01). Additionally, SPMS patients had statistically significantly lower Helios gene expression levels (P = 0.002). CONCLUSION: In SPMS patients, a decrease in the frequency of the CD4+CD25+FOXP3+Helios+ Treg population can result in an imbalanced immune system. In other words, one of the immunological mechanisms involved in this disease may be a deficiency in Tregs. Helios gene expression was also decreased in these patients, which may exacerbate functional defects in Tregs.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Leucócitos Mononucleares/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Crônica Progressiva/metabolismo , Linfócitos T Reguladores
10.
Glia ; 71(3): 588-601, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36377669

RESUMO

Multiple sclerosis (MS) is the most common inflammatory, demyelinating and neurodegenerative disease of the central nervous system in young adults. Chronic-relapsing experimental autoimmune encephalomyelitis (crEAE) in Biozzi ABH mice is an experimental model of MS. This crEAE model is characterized by an acute phase with severe neurological disability, followed by remission of disease, relapse of neurological disease and remission that eventually results in a chronic progressive phase that mimics the secondary progressive phase (SPEAE) of MS. In both MS and SPEAE, the role of microglia is poorly defined. We used a crEAE model to characterize microglia in the different phases of crEAE phases using morphometric and RNA sequencing analyses. At the initial, acute inflammation phase, microglia acquired a pro-inflammatory phenotype. At the remission phase, expression of standard immune activation genes was decreased while expression of genes associated with lipid metabolism and tissue remodeling were increased. Chronic phase microglia partially regain inflammatory gene sets and increase expression of genes associated with proliferation. Together, the data presented here indicate that microglia obtain different features at different stages of crEAE and a particularly mixed phenotype in the chronic stage. Understanding the properties of microglia that are present at the chronic phase of EAE will help to understand the role of microglia in secondary progressive MS, to better aid the development of therapies for this phase of the disease.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Doenças Neurodegenerativas , Camundongos , Animais , Esclerose Múltipla/genética , Microglia/metabolismo , Esclerose Múltipla Crônica Progressiva/genética , Camundongos Biozzi , Encefalomielite Autoimune Experimental/metabolismo , Expressão Gênica , Modelos Animais de Doenças
12.
Mol Biol (Mosk) ; 56(3): 468-475, 2022.
Artigo em Russo | MEDLINE | ID: mdl-35621102

RESUMO

The pathogenesis of multiple sclerosis (MS), a chronic disease of the CNS, includes autoimmune and neurodegenerative components. In most cases, patients develop relapsing-remitting MS (RRMS), while 10-15% of patients develop primary progressive MS (PPMS), which differs from RRMS in the mechanisms of the pathological process, some demographic, and some clinical characteristics. These differences may be explained by the epigenetic regulation of gene expression in PPMS including DNA methylation as one of the key epigenetic processes. The features of DNA methylation in various cell populations in PPMS patients remain understudied. The goal of this study is to identify differentially methylated CpG sites (DMSs) of the genome of CD4+ T lymphocytes, which characterize PPMS. The study included eight treatment-naive PPMS patients and eight healthy controls. Genome-wide analysis of DNA methylation of CD4+ T lymphocytes was performed using high-density DNA microarrays. We have identified 108 DMSs, which distinguish PPMS patients from healthy controls. In PPMS patients 81% of the DMSs are hypermethylated. More than a half of the identified DMSs are located in known genes in CpG islands and adjacent regions, which indicates a high functional significance of these DMSs in PPMS development. Analysis of the overrepresentation of DMS-containing genes in the main biological processes demonstrates their involvement in the regulation of cell adhesion to the extracellular matrix and the development of the immune response, i.e., antigen processing and presentation, and development of the immune system. Genome-wide analysis of DNA methylation in CD4+ T lymphocytes of PPMS patients indicates the involvement of this epigenetic process in the immunopathogenesis of the disease. These results may help better understand the pathogenesis of this severe form of MS.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Linfócitos T CD4-Positivos/metabolismo , Metilação de DNA , Epigênese Genética , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla Crônica Progressiva/genética
13.
Mol Immunol ; 147: 147-156, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35594733

RESUMO

INTRODUCTION: Among numerous invasive procedures for the research of biomarkers, blood-based indicators are regarded as marginally non-invasive procedures in the diagnosis and prognosis of demyelinating disorders, including multiple sclerosis (MS). In this study, we looked into the blood-derived gene expression profiles of patients with multiple sclerosis to investigate their clinical traits and linked them with dysregulated gene expressions to establish diagnostic and prognostic indicators. METHODS: We included 51 patients with relapsing-remitting MS (RRMS, n = 31), clinically isolated syndrome (CIS, n = 12), primary progressive MS (PPMS, n = 8) and a control group (n = 51). Using correlational analysis, the transcriptional patterns of chosen gene panels were examined and subsequently related with disease duration and the expanded disease disability score (EDSS). In addition, principal component analysis, univariate regression, and logistic regression analysis were employed to highlight distinct profiles of genes and prognosticate the excellent biomarkers of this illness. RESULTS: Our findings demonstrated that neurofilament light (NEFL), tumor necrosis factor α (TNF-α), Tau, and clusterin (CLU) were revealed to be increased in recruited patients, whereas the presenilin-1 (PSEN1) and cell-surface glycoprotein-44 (CD44) were downregulated. Principal Component Analysis revealed distinct patterns between the MS and control groups. Correlation analysis indicated co-dependent dysregulated genes and their differential expression with clinical findings. Furthermore, logistic regression demonstrated that Clusterin (AUC=0.940), NEFL (AUC=0.775), TNF-α (AUC=0.817), Tau (AUC=0.749), PSEN1 (AUC=0.6913), and CD44 (AUC=0.832) had diagnostic relevance. Following the univariate linear regression, a significant regression equation was found between EDSS and IGF-1 (R2 adj = 0.10844; p= 0.0060), APP (R2 adj = 0.1107; p= 0.0098), and PSEN1 (R2 adj = 0.1266; p=0.0102). CONCLUSION: This study exhibits dynamic gene expression patterns that represent the significance of specified genes that are prospective diagnostic and prognostic biomarkers for multiple sclerosis.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Biomarcadores , Clusterina , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Humanos , Esclerose Múltipla/sangue , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/genética , Esclerose Múltipla Crônica Progressiva/sangue , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Crônica Progressiva/genética , Prognóstico , Estudos Prospectivos , Fator de Necrose Tumoral alfa
14.
Eur J Neurol ; 29(5): 1457-1464, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35073438

RESUMO

BACKGROUND AND PURPOSE: The NOX2 enzyme of myeloid cells generates reactive oxygen species (ROS) that have been implicated in the pathology of multiple sclerosis (MS). We aimed to determine the impact of genetic variation within CYBA, which encodes the functional CYBA/p22phox subunit of NOX2, on MS severity and progression. METHODS: One hundred three MS patients with up to 49 (median = 17) years follow-up time from first MS diagnosis were genotyped at the single nucleotide polymorphisms rs1049254 and rs4673 within CYBA. Results were matched with disease severity and time to diagnosis of secondary progressive MS (SPMS). NOX2-mediated formation of ROS was measured by chemiluminescence in blood myeloid cells from healthy donors (n = 55) with defined genotypes at rs1049254 and rs4673. RESULTS: The rs1049254/G and rs4673/A CYBA alleles were associated with reduced formation of ROS and were thus defined as low-ROS alleles. Patients carrying low-ROS alleles showed reduced multiple sclerosis severity score (p = 0.02, N = 103, linear regression) and delayed onset of SPMS (p = 0.02, hazard ratio [HR] = 0.46, n = 100, log-rank test). In a cohort examined after 2005, patients carrying low-ROS CYBA alleles showed >20 years longer time to secondary progression (p = 0.003, HR = 0.29, n = 59, log-rank test). CONCLUSIONS: These results implicate NOX2 in MS, in particular for the development of secondary progressive disease, and point toward NOX2-reductive therapy aiming to delay secondary progression.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , NADPH Oxidases , Genótipo , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla Crônica Progressiva/genética , NADPH Oxidases/genética , Polimorfismo de Nucleotídeo Único , Espécies Reativas de Oxigênio
15.
J Neuroimmunol ; 364: 577809, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026432

RESUMO

BACKGROUND: Secondary progressive multiple sclerosis (SPMS) is the second most common presentation of multiple sclerosis (MS) and is characterized by a gradually deteriorating disease with or without relapses. Approximately 80% of patients with relapsing-remitting MS (RRMS) develop SPMS within 20 years. Epidemiological investigations have revealed an average 7-year life expectancy decrease (more severe in progressive subtypes) in patients with MS. Studies have focused on the neurodegenerative pathogenesis of SPMS; and epigenetic changes have been associated with disease progression in neurodegenerative disorders. However, the evidence for the association between epigenetic changes and SPMS is scarce. Thus, in this study we aimed to identify the key epigenetic genes in SPMS. METHODS: We downloaded DNA methylation and gene expression matrices from the Gene Expression Omnibus (GEO) database. We used bioinformatic analyses to identify key epigenetic genes associated with overall survival (OS) in patients with SPMS. RESULTS: We found 49 differentially methylated positions (DMPs) between the SPMS and control GSE40360 datasets. We used the wANNOVAR server to obtain 64 methylated genes. We merged the gene expression datasets (GSE131282 and GSE135511) in the NetworkAnalyst platform and found 12,442 differentially-expressed genes (DEGs) between SPMS and controls using the Fisher's method, fixed effect model, Vote counting, and direct merging methods. Moreover, we identified 21 epigenetic genes (all hyper-methylated) after an integrating analysis of DMPs and DEGs of patients with SPMS. We established an epigenetic gene signature associated with the OS of patients with SPMS including six hyper-methylated genes (ITGA6, PPP1R16B, RNF126, ABHD8, FOXK1, and SLC6A19) based on the LASSO-Cox method. The calculated individual risk scores were associated with Oss, and we divided patients into high- and low-risk groups on the basis of the mean cut-off value. The six key epigenetic genes were significantly associated with gender, disease duration, and age at death via Spearman correlation analyses. In addition, survival analyses revealed a significant OS difference between high- and low-risk groups. The ROC curves indicated good performance for this predictive model. CONCLUSION: We identified 21 hyper-methylated genes in patients with SPMS via an integrated analysis of DNA methylation and gene expression datasets. We identified a six-epigenetic gene signature that predicts the individual OS with good accuracy. These results indicated that epigenetic modifications play a vital role in the disease progression of SPMS.


Assuntos
Metilação de DNA/genética , Perfilação da Expressão Gênica/métodos , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Crônica Progressiva/mortalidade , Transcriptoma , Adulto , Biologia Computacional , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Genet Test Mol Biomarkers ; 25(11): 720-726, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34788141

RESUMO

Introduction: Brain-derived neurotrophic factor (BDNF) levels are reduced in advanced stages of multiple sclerosis (MS) and may be associated with reduced regenerative capability in progressive MS. This has brought increased attention to factors regulating BDNF production in MS. Our aim was to investigate the link between neurotrophin-regulating microRNAs (miRNA) and disease progression in MS. Materials and Methods: Serum levels of BDNF and peripheral blood mononuclear cell (PBMC) expression levels of miR-132-3p, miR-106b-5p and miR-19b-3p were respectively measured by ELISA and real time PCR in twelve relapsing remitting MS (RRMS) patients, seven secondary progressive MS (SPMS) patients and fourteen healthy controls. Results: Serum BDNF levels were significantly reduced in SPMS patients, while selected miRNAs were significantly upregulated in PBMC of RRMS and SPMS patients. miR-106b-5p and miR-19b-3p respectively showed the highest sensitivity and specificity for MS diagnosis by receiver operating characteristic curve analysis. There was a negative correlation between levels of BDNF and the miRNAs in RRMS. Likewise, levels of BDNF and the investigated miRNAs showed positive and negative correlations respectively with the expanded disability status scale in RRMS and SPMS patients. miR-132-3p and miR-106b-5p levels showed positive correlations with the progression index in SPMS patients. Conclusion: Our results suggest that increased disability is associated with downregulation of miR-132-3p, miR-106b-5p and miR-19b-3p in RRMS patients and putatively promotes increased production of neuroprotective BDNF as a compensatory mechanism. This link between the investigated miRNAs and BDNF in RRMS does not appears to hold for SPMS. This might be one of the factors contributing to reduced regenerative ability in the progressive stage of MS.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , MicroRNAs/sangue , Esclerose Múltipla Crônica Progressiva/sangue , Esclerose Múltipla Recidivante-Remitente/sangue , Adulto , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação para Baixo , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Recidivante-Remitente/genética , Projetos Piloto
17.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769314

RESUMO

Multiple sclerosis (MS) is a debilitating neurodegenerative, highly heterogeneous disease with a variable course. The most common MS subtype is relapsing-remitting (RR), having interchanging periods of worsening and relative stabilization. After a decade, in most RR patients, it alters into the secondary progressive (SP) phase, the most debilitating one with no clear remissions, leading to progressive disability deterioration. Among the greatest challenges for clinicians is understanding disease progression molecular mechanisms, since RR is mainly characterized by inflammatory processes, while in SP, the neurodegeneration prevails. This is especially important because distinguishing RR from the SP subtype early will enable faster implementation of appropriate treatment. Currently, the MS course is not well-correlated with the biomarkers routinely used in clinical practice. Despite many studies, there are still no reliable indicators correlating with the disease stage and its activity degree. Circulating microRNAs (miRNAs) may be considered valuable molecules for the MS diagnosis and, presumably, helpful in predicting disease subtype. MiRNA expression dysregulation is commonly observed in the MS course. Moreover, knowledge of diverse miRNA panel expression between RRMS and SPMS may allow for deterring disability progression through successful treatment. Therefore, in this review, we address the current state of research on differences in miRNA panel expression between the phases.


Assuntos
Biomarcadores Tumorais/genética , MicroRNA Circulante/genética , Esclerose Múltipla Crônica Progressiva/diagnóstico , Recidiva Local de Neoplasia/diagnóstico , Animais , Diagnóstico Diferencial , Progressão da Doença , Humanos , Esclerose Múltipla Crônica Progressiva/genética , Recidiva Local de Neoplasia/genética
18.
J Transl Med ; 19(1): 316, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294105

RESUMO

BACKGROUND: Progressive multiple sclerosis (PMS) is an uncommon and severe subtype of MS that worsens gradually and leads to irreversible disabilities in young adults. Currently, there are no applicable or reliable biomarkers to distinguish PMS from relapsing-remitting multiple sclerosis (RRMS). Previous studies have demonstrated that dysfunction of N6-methyladenosine (m6A) RNA modification is relevant to many neurological disorders. Thus, the aim of this study was to explore the diagnostic biomarkers for PMS based on m6A regulatory genes in the cerebrospinal fluid (CSF). METHODS: Gene expression matrices were downloaded from the ArrayExpress database. Then, we identified differentially expressed m6A regulatory genes between MS and non-MS patients. MS clusters were identified by consensus clustering analysis. Next, we analyzed the correlation between clusters and clinical characteristics. The random forest (RF) algorithm was applied to select key m6A-related genes. The support vector machine (SVM) was then used to construct a diagnostic gene signature. Receiver operating characteristic (ROC) curves were plotted to evaluate the accuracy of the diagnostic model. In addition, CSF samples from MS and non-MS patients were collected and used for external validation, as evaluated by an m6A RNA Methylation Quantification Kit and by real-time quantitative polymerase chain reaction. RESULTS: The 13 central m6A RNA methylation regulators were all upregulated in MS patients when compared with non-MS patients. Consensus clustering analysis identified two clusters, both of which were significantly associated with MS subtypes. Next, we divided 61 MS patients into a training set (n = 41) and a test set (n = 20). The RF algorithm identified eight feature genes, and the SVM method was successfully applied to construct a diagnostic model. ROC curves revealed good performance. Finally, the analysis of 11 CSF samples demonstrated that RRMS samples exhibited significantly higher levels of m6A RNA methylation and higher gene expression levels of m6A-related genes than PMS samples. CONCLUSIONS: The dynamic modification of m6A RNA methylation is involved in the progression of MS and could potentially represent a novel CSF biomarker for diagnosing MS and distinguishing PMS from RRMS in the early stages of the disease.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Adenosina/análogos & derivados , Biomarcadores , Humanos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/genética , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Crônica Progressiva/genética , RNA/genética , Adulto Jovem
19.
Brain Res Bull ; 175: 1-15, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34280479

RESUMO

Progressive multiple sclerosis (PMS) is a neurological disease associated with the development of depression and anxiety, but treatments available are unsatisfactory. The transient receptor potential ankyrin 1 (TRPA1) is a cationic channel activated by reactive compounds, and the blockage of this receptor can reduce depression- and anxiety-like behaviors in naive mice. Thus, we investigated the role of TRPA1 in depression- and anxiety-like behaviors in a PMS model in mice. PMS model was induced in C57BL/6 female mice by the experimental autoimmune encephalomyelitis (EAE). Nine days after the PMS-EAE induction, behavioral tests (tail suspension and elevated plus maze tests) were performed to verify the effects of sertraline (positive control), selective TRPA1 antagonist (A-967,079), and antioxidants (α-lipoic acid and apocynin). The prefrontal cortex and hippocampus were collected to evaluate biochemical and inflammatory markers. PMS-EAE induction did not cause locomotor changes but triggered depression- and anxiety-like behaviors, which were reversed by sertraline, A-967,079, α-lipoic acid, or apocynin treatments. The neuroinflammatory markers (AIF1, GFAP, IL-1ß, IL-17, and TNF-α) were increased in mice's hippocampus. Moreover, this model did not alter TRPA1 RNA expression levels in the hippocampus but decrease TRPA1 levels in the prefrontal cortex. Moreover, PMS-EAE induced an increase in NADPH oxidase and superoxide dismutase activities and TRPA1 endogenous agonist levels (hydrogen peroxide and 4-hydroxynonenal). TRPA1 plays a fundamental role in depression- and anxiety-like behaviors in a PMS-EAE model; thus, it could be a possible pharmacological target for treating these symptoms in PMS.


Assuntos
Ansiedade/genética , Ansiedade/psicologia , Comportamento Animal , Depressão/genética , Depressão/psicologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/psicologia , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Crônica Progressiva/psicologia , Canal de Cátion TRPA1/genética , Animais , Antioxidantes/farmacologia , Feminino , Elevação dos Membros Posteriores , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oximas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sertralina/farmacologia , Canal de Cátion TRPA1/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA